
SoC-Tuner: An Importance-guided Exploration Framework
for DNN-targeting SoC Design

Shixin Chen, Su Zheng, Chen Bai, Wenqian Zhao,
Shuo Yin, Yang Bai, Bei Yu

Department of Computer Science and Engineering,
The Chinese University of Hong Kong

Jan. 23, 2024

1 Introduction

2 Problem Formulation

3 SoC-Tuner Framework

4 Experiments & Analysis

5 Conclusion

Outline

2/28

Introduction

DNNs of Various Applications

DNNs’ excellent capability comes with the cost of massive computation, so it is necessary
to design excellent devices for deployment.

Fig.1 Various Applications using DNNs Fig.2 Deployment Devices for DNNs

Introduction: DNNs & DNNs Deployment

4/28

DNNs Accelerators
Lots of accelerators are proposed to accelerate the computation of DNNs. The core idea is
to minimize the data movement and improve computation parallelism.

• Eyeriss1

• FlexFlow2

• MAGNet3

1Yu-Hsin Chen, Joel Emer, and Vivienne Sze (2016). “Eyeriss: A spatial architecture for
energy-efficient dataflow for convolutional neural networks”. In: ACM SIGARCH computer
architecture news 44.3, pp. 367–379.

2Wenyan Lu et al. (2017). “Flexflow: A flexible dataflow accelerator architecture for
convolutional neural networks”. In: 2017 IEEE International Symposium on High Performance Computer
Architecture (HPCA). IEEE, pp. 553–564.

3Rangharajan Venkatesan et al. (2019). “Magnet: A modular accelerator generator for neural
networks”. In: Proc. ICCAD. IEEE, pp. 1–8.

Introduction: DNNs Accelerators

5/28

SRAML1
ICache+
DCache

BOOM/Rocket
Core

CPU

L2 Cache

Tile Tile

Tile Tile

Tile Tile

Tile Tile

Tile Tile

Tile Tile

Tile Tile

Tile Tile

Systolic Array Mesh

Tile

Tile

Tile

Tile

Tile Tile Tile Tile Tile

… … … … …

…

…

…

…

…

Accumulator
SRAM

Bank K

Bank 0

Bank 1

…

ReLU

Pooling Mat Scaler

NormalizerIm2col

Transposer

Function Units

Controller
DMA

Local TLB

Reservation
Station

Scratchpad

Bank 0

Bank 1

Bank 2

…

Bank L

Accelerator

R
oC

C
Cm

d

Loop
Unroller

R
oC

C
PT

W

PE PE

PE PE

…

…

…

… …

PE

PE

PEPEPE

Sy
st

ol
ic

 T
ile

…

…

Weight B
Input

Activation A

Partial Sum D
(From PE above)

Weight
Preload

Forward
Input

Partial Sum C
 (To PE below)

WS

Acc D

Input
Activation A

Input
Weight B

Accumulator
Preload

Partial Sum C

OS

Fig.3 An SoC Architecture Containing a DNN Accelerator

Designing Challenges:
• Previous works mainly focus

on the accelerator, ignoring the
complicated interactions
between modules.

• Huge design space from
component parameters makes
it necessary to design an
efficient exploration strategy.

• Inaccurate analytical models
and simplified simulation tools
may mislead design direction.

Introduction: SoC for DNN Acceleration

6/28

Table: Selected Design Space Parameters from the SoC

Modules Components Descriptions Candidate Values

CPU & L2 Cache

HostCore Various Host CPU core core1, core2, core3
L2Bank Entries of L2 cache banks 1, 2, 4
L2Way Entries of L2 cache way 4, 8, 16
L2Capa Capacity of each L2 cache bank 128, 256, 512

Systolic Array

Tilerow/col Dimension of the tile in mesh 1, 2, 4, 8
Meshrow/col Dimension of the mesh in systolic array 8, 16, 32, 64

Dataflow Dataflow mode of systolic array WS, OS, BOTH
InputType Bit width of input datetype 8, 16, 32
AccType Bit width of accumulator datatype 8, 16, 32
OutType Bit width of output datetype 8, 20, 32

Accelerator Memory

SpBank Banks of scratchpad memory 4, 8, 16,32
SpCapa Entries of each scratchpad bank 64, 128, 256, 512
AccBank Banks of accumulator memory 1, 2 ,4 ,8
AccCapa Entries of each accumulator bank 64, 128, 256, 512

Accelerator Controller

LdQueue Entries of the Lord instruction queue 2, 4, 8, 16
StQueue Entries of the Store instruction queue 2, 4, 8, 16
ExQueue Entries of the Execute instruction queue 2, 4, 8, 16

LdRes Entries of the Lord instruction in ROB 2, 4, 8, 16
StRes Entries of the Store instruction in ROB 2, 4, 8, 16
ExRes Entries of the Execute instruction in ROB 2, 4, 8, 16

Communication

MemReq Number of memory requests in-flight 16, 32, 64
DMABus Width of DMA bus 32, 64, 128

DMABytes Number of bytes in DMA bus 32, 64, 128
TLBSize Size of TLB page 4, 8, 16

Challenge: Huge design space from component parameters

7/28

Problem Formulation

Notation

• x: a combination of feature parameters is denoted as a design point of SoC

• X : all design points make up the entire design space

• y = F(x) = {f1(x), · · · , fm(x)}: evaluation metrics reported by VLSI tools, like chip
area, power consumption, and latency of DNNs computation.

SoC Design Problem

Given X , the SoC design problem is to find optimal x that minimizes chip area and power
consumption constraints, and latency of DNNs computation.

Problem Formulation

9/28

Pareto Optimal Set

For an optimization problem, an objective y = F(x), an n-dimensional vector, is said to be
dominated by y′ = F(x′) if

∀i ∈ [1,n],Fi(x) ≤ Fi(x′);

∃j ∈ [1,n],Fj(x) < Fj(x′).
(1)

In this way, we denote x′ ≽ x. A set of design points that are not dominated by any other
points form the Pareto optimal set. In the Pareto optimal set, a design point can not be
optimized without sacrificing other objectives.

SoC Design Space Exploration

We define the SoC design space exploration as to find a subset X ∗ ∈ X , whose
corresponding metrics Y∗ form the Pareto optimal set. Hence,
Y∗ = {y′|y′ ⪰̸ y,∀y ∈ Y},X ∗ = {x|F(x) ∈ Y∗,∀x ∈ X}

Problem Formulation

10/28

SoC-Tuner Framework

Design Configs Chisel Generation Chisel Code FIRRTL

SoC VerilogSoC Design Space Construction

Floorplan & Placement

SoC Netlist

Cycle Activity Files

RTL Simulation

SoC Verilog

RISC-V Compile
Toolchains

Executable Binaries

Standard
 Cell Library

RTL Synthesis

VLSI Power Tool

SoC Layout

DNN
Workloads

VLSI Flow

Tools

Files

Data

ResNet

MobileNet

Transformer

DNN Models

 Latency
Data

Area
Data

Power
Data

Importance-based Pruning:
ICD Algorithm

Multi-Objective Optimization of SoC

Pareto Optimal Set

Importance-based Initialization:
SoC-Init Algorithm

ICD Design Space

Exploration Flow

Fig.6 The overall flow of the proposed SoC-Explorer framework

SoC-Tuner: Overview of Framework

12/28

SoC Design Space Construction

• Instead of using analytical models or simplified simulation tools, our exploration
goal is to find actual RTL-level SoC design.

• Chipyard4 is an open-source SoC generation framework written in Chisel language,
which can generate RTL-level design that can be fabricated.

• We use Python to implement a Chisel Generation Tool, which can automatically take
in design points and generate Chisel-based SoC design.

Design Configs Chisel Generation Chisel Code FIRRTL

SoC VerilogSoC Design Space Construction

Fig.7 SoC Design Space Construction

4Alon Amid et al. (2020). “Chipyard: Integrated design, simulation, and implementation
framework for custom SoCs”. In: IEEE Micro 40.4, pp. 10–21.

SoC-Tuner

13/28

VLSI-Flow
Through VLSI tools, we can get accurate metrics to guide the design of SoC.

Floorplan
Placement

SoC Netlist

Cycle
Activity Files

RTL Simulation

SoC Verilog

RISC-V Compile
Toolchains

Executable Binaries

Standard
 Cell Library

RTL Synthesis

VLSI Power Tool

SoC Layout

DNN
Workloads

VLSI Flow

Tools

Files

Data

ResNet

MobileNet

Transformer

DNN Models

 Latency
Data

Area
Data

Power
Data

Fig.8 VLSI Flow to Get Metrics of SoC

SoC-Tuner

14/28

Exploration of SoC-Tuner

• Space Pruning: ICD Algorithm

• Efficient Sampling: SoC-Init Algorithm

• Exploration Optimization: Information-guided Bayesian Algorithm

SoC-Tuner

Pruning: ICD Algorithm

Multi-Objective Bayesian Optimization

Pareto Optimal Set

SoC Design Space

Sampling:
SoC-TED Algorithm

ICD Design Space

Fig.9 Backbone of SoC-Tuner

SoC-Tuner

15/28

Pruning Space

We utilize ICD results to prune the design space as follows

if vi < vthreshold, then ∀x ∈ X , xi = medium({x1
i , · · · , xj

i}), (2)

H
os
tC
or
e

L2
B
an
k

L2
W
ay

L2
C
ap
a

T
ile
ro
w

M
es
hr
ow

D
at
afl
ow

In
pu
tT
yp
e

A
cc
Ty
pe

O
ut
Ty
pe

Sp
B
an
k

Sp
C
ap
a

A
cc
B
an
k

A
cc
C
ap
a

Ld
Q
ue
ue

St
Q
ue
ue

Ex
Q
ue
ue

Ld
R
es

Ex
R
es

St
R
es

M
em
R
eq

D
M
A
B
us

D
M
A
B
yt
es

T
LB
Si
ze

0

0.25

0.5

0.75

1

vthreshold

N
or
m
al
iz
ed

Im
p
or
ta
n
ce

V
al
u
e
(I
C
D
V
)

Host CPU & L2 Cache
Systolic Array

Accelerator Memrory
Instruction Controller

Communication

Fig.10 Importance Analysis Given by ICD Algorithm

• The more important feature will have
more influence on the metrics of the
SoC.

• We use the Inter-Cluster Distance (ICD)
to analyze parameter importance.

vi =

∑
p,q ||mp,mq||2

C|M|
2

, p, q ∈ {1, 2, ..., ti}, (3)

SoC-Tuner: ICD Algorithm

16/28

ICD Space

We utilize ICD results to transform the original space into ICD space, where similar
design points will move closer and different design points will move further.

X ′ = {v⊙ x,∀x ∈ X}, (4)

v ⊙ xv ⊙ x

0 5 10 15
0

5

10

15

feature1

fe
a
tu

re
2

Original Space

c f g 3c f g 3

c f g 2c f g 2

c f g1c f g1

d1d1
d2d2

c f g1′ c f g1′

c f g 2′ c f g 2′
c f g 3′ c f g 3′ d′ 1d′ 1 d ′ 2d ′ 2

0 5 10 15
0

5

10

15

feature1
fe

a
tu

re
2

ICD Space

Fig.11 A toy example with 2 features shows the transformation from the original space to the ICD
space.

SoC-Tuner: ICD Algorithm

17/28

• We adapt TED (Yu, Bi, and
Tresp 2006) method into the
SoC design problem and form
the SoC-Init Algorithm.

• SoC-Init algorithm will sample
the most representative design
points that scatter in the whole
design space base on features.

SoC-Tuner: SoC-Init Algorithm

18/28

Gaussian Process

F = [f (x′
1), f (x′2), · · · , f (x′n))]

T ∼ N (µ,KX ′X ′|θ), (5)

where KX ′X ′|θ is the intra-covariance matrix among all feature vectors and can be
computed via [KX ′X ′|θ]ij = kθ(x′i ,x

′
j)

, and Gaussian noise N (f (x′), σ2
e) is to model

uncertainties of GP models.

Bayesian Models

Given a newly sampled feature vector x′∗, the predictive joint distribution f∗ based on y
can be calculated according to Equation 6.

f∗|y ∼ N (

[
µ
µ∗

]
,

[
KX ′X ′|θ + σ2

e I KX ′x′∗|θ
Kx′∗X ′|θ kx′∗x′∗|θ

]
). (6)

SoC-Tuner

19/28

Information-guided Optimization

We attempt to maximize the information gained about the Pareto optimal set Y∗. The
information gain-based acquisition function I(x′) can be expressed as with entropy H(.),
We use

I(x′) = I({x′,y},Y∗|X ′) (7)
= H(Y∗|X ′)− Ey[H(Y∗|X ′ ∪ {x′,y})]. (8)

x∗ = argminx′ I(x′) (9)

To conclude, we can define SoC-Tuner Algorithm as the overall BO algorithm of
SoC-Tuner:

x∗ ← SoC-Tuner(X ′,Y∗,θ), (10)

SoC-Tuner

20/28

Experiment

Experiment Setitng

In the setting of SoC-Tuner, we set n = 30 for the ICD algorithm, vth = 0.12 for pruning
design space, u = 0.1 and b = 20 for SOC-Init algorithm, T = 120 for SoC-Tuner.

Baselines

• XGboost

• Support Vector Regression (SVR)

• Random Forest (RF)

• ICCAD’215

• HPCA’076

5Chen Bai et al. (2021). “BOOM-Explorer: RISC-V BOOM Microarchitecture Design Space
Exploration Framework”. In: Proc. ICCAD, pp. 1–9. DOI: 10.1109/ICCAD51958.2021.9643455.

6Benjamin C Lee and David M Brooks (2007). “Illustrative design space studies with
microarchitectural regression models”. In: Proc. HPCA. IEEE, pp. 340–351.

Experiment: Baseline & Setting

22/28

https://doi.org/10.1109/ICCAD51958.2021.9643455

0.6 0.7 0.8 0.9 1 1.1 1.2 1.3

·107

0.2

0.4

0.6

0.8

1

1.2

·107

Area(µm2)

L
at
en

cy
(c
y
cl
es
)

Design Space
Real Pareto
XGboost
SVR
RF

ICCAD’21
HPCA’07

Ours

(a) The learned Pareto optimal set (inference
latency v.s. chip area)

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

·108

0.2

0.4

0.6

0.8

1

1.2

·107

Power(nW)

L
at
en
cy

(c
y
cl
es
)

Design Space
Real Pareto
XGboost
SVR
RF

ICCAD’21
HPCA’07

Ours

(b) The learned Pareto optimal set (inference
latency v.s. power consumption)

Fig.13 The Pareto optimality set given by SoC-Tuner (ResNet50)

Experiment: Pareto Optimal Set

23/28

ADRS

ADRS(Γ,Ω) =
1
|Γ|

∑
γ∈Γ,ω∈Ω

min f (γ, ω), (11)

where f is the Euclidean distance function. Γ is the real Pareto optimality set and Ω is the
learned Pareto optimality set.

0 20 40 60 80 100 120 140

0.5

0.8

1.0

Exploration Rounds

N
o
rm

a
li
ze
d
A
D
R
S

XGBoost

ICCAD’21

HPCA’07

SoC-Tuner

Fig.14 The ADRS curves of different
exploration methods

Ours XGBoost SVR RF ICCAD’21HPCA’07
2.5

3

3.5

4

4.5

5

·106

Exploration Methods

In
fe
re
n
ce

C
y
cl
es

Resnet50

Mobilenet

Transformer

Fig.15 The inference cycles of the optimal
SoC designs given by various methods

Experiment: Performance Analysis

24/28

Table: The optimal SoC design explored by
SoC-Tuner

Components Values Components Values

HostCore core1 AccBank 8
L2Bank 1 AccCapa 128
L2Way 8 LdQueue 4
L2Capa 512 StQueue 8

Tilerow/col 4 ExQueue 8
Meshrow/col 8 LdRes 8

Dataflow OS StRes 8
InputType 8 ExRes 8
AccType 16 MemReq 16
OutType 20 DMABus 64
SpBank 8 DMABytes 128
SpCapa 256 TLBSize 4

1.6 %

34.4 %

19 %

17 %

11.2 %

2.7 %
3.3 %

10.7 %

CPU core

L2 cache

Systolic Mesh

Scratchpad

Accumulator

L1 cache

Controller

Others

Fig.16 The area breakdown of the optimal SoC

Experiment: Optimal Design

25/28

• We thoroughly consider various SoC components that influence DNN computations
and construct a huge design space to avoid insufficient evaluation of overall DNN
inference.

• We employ actual very-large-scale-integration (VLSI) flow to evaluate multiple
metrics, which achieves more accurate modeling of SoC than simplified analytical
tools.

• We propose an importance-based analysis to prune the design space, a sampling
algorithm to select the most representative initialization points, and an
information-guided multi-objective optimization method to balance multiple design
metrics of SoC design.

• Experimental results demonstrated the efficiency and effectiveness of our framework
on various benchmarks compared to some state-of-the-art methods.

Why SoC-Tuner Effective?

26/28

Q & A

THANK YOU!

	Introduction
	Problem Formulation
	SoC-Tuner Framework
	Experiments & Analysis
	Conclusion

