

Design of DNN Accelerator Based on Winograd Algorithm using Chisel

--Bachelor Degree Defense

Respondent: Shixin Chen

Department: School of ESE, Nanjing University Email: shixinchen@smail.nju.edu.cn

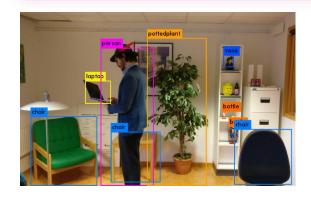
Major: Microelectronic Science and Engineering (VLSI Design and System Integration)

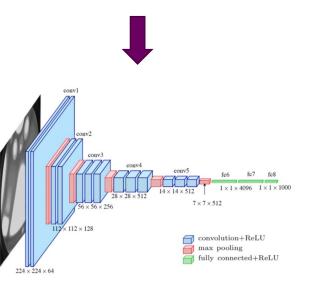
CONTENTS

 $1 \overline{\frac{1}{Preliminary}}$ 2 Winograd Accelerator Architecture **3** Analysis of Performance **4** <u>Conclusion and Outlook</u>

1 Preliminary

The Development of Artificial Intelligence





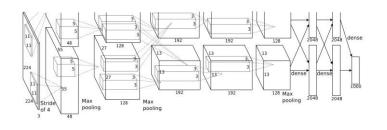
- Artificial intelligence (AI) Applications are in popularity
 - Object Detection
 - Face Recognition
 - Autonomous Vehicles
 - Super-resolution Videos
 - •
- Deep Convolutional Neural Networks (CNNs) stimulated AI research
 - Mimicking the mechanisms of neurons
 - Extracting features effectively
 - Outperforming many traditional methods

Fig 1. Wide usage of AI

Fig 2. Deep Convolutional Neural Network

⁵ **1** Preliminary

The Development of Deep CNNs



Filter concatenation 3x3 convolutions 1x1 convolutions 1x1 convolutions 1x1 convolutions 1x1 convolutions 9x3 max pooling 9revious layer

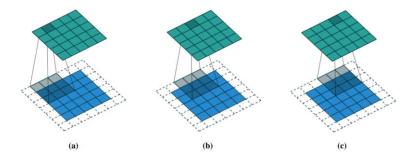


Fig 4. Convolutional Computation

- > Deep CNNs developed rapidly
 - Deeper and deeper layers
 - Huge parameters
 - Convolution consists of 90+% computation
 - DNN Accelerator is necessary

(a) AlexNet (Krizhevsky et al., 2012)

(c) GoogLeNet (Szegedy et al., 2015)

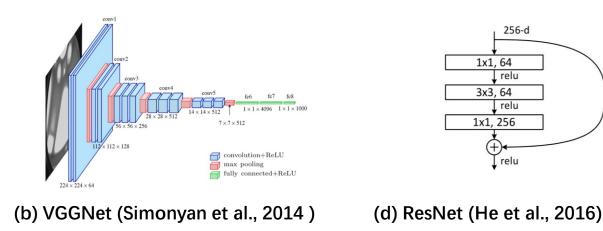
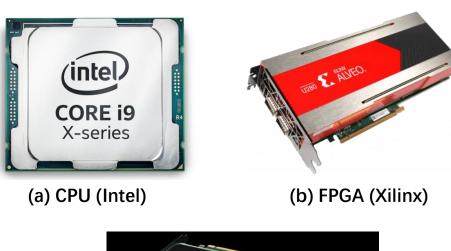


Fig 3. The Development of Deep CNNs

1 Preliminary

Deployment Platforms of Deep CNNs



GEFORCE RTX

(c) GPU (NVIDIA)

Fig 5. The Deployment platforms of Deep CNNs

- > Deep CNNs deployment platforms
 - Improving parallelism \rightarrow GPU
 - Improving specialization \rightarrow ASIC
 - Improving flexibility, parallelism and specialization \rightarrow FPGA
- Convolutional computation acceleration
 - Accelerating multiplication-accumulation
 → Digital Signal Processor on FPGA
 - Fast convolution algorithm
 → FFT, Winograd

> There are still many challenges

- Long development period of accelerator
- Limited hardware resources on platforms
- Balance between performance and resources

1 Preliminary

Deployment Platformes of Deep CNNs

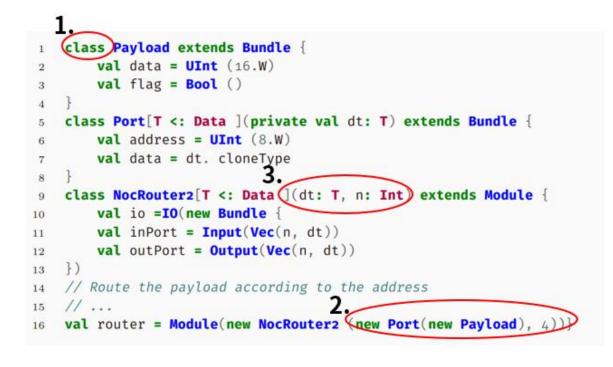


Fig 6. Chisel Code Samples: Parameterized NoC Routers

- Drawbacks of Verilog
 - Low level abstraction, consuming lots of time
 - Low efficiency in iterative development
 - Error-prone element types and data width
- Characteristics of Chisel
 - Object-oriented programming
 - Functional programming
 - High-level parameterized philosophy
 - \rightarrow Iteratively develop to the optimal design \rightarrow Agile IC design
- ➢ Chisel → FIRRTL → Verilog → Synthesis Tool

Bottlenecks

Innovative Points

Designing accelerator is a long period using Verilog, consuming lots of manpower

> Agile Development Perspective

- Design a parameterized DNN accelerator based on Winograd Algorithm using Chisel
- Choose the optimal data quantization to balance resource and performance

> Accelerator Design Perspective

- Optimize on-chip memory resource
- Decrease 56% multiplication resources, 61% registers compared with commercial implementation
- Achieve 3.6x speed compared with CPU

 Accelerator consumes lots of on-chip resources, limiting implementation of big DNN model

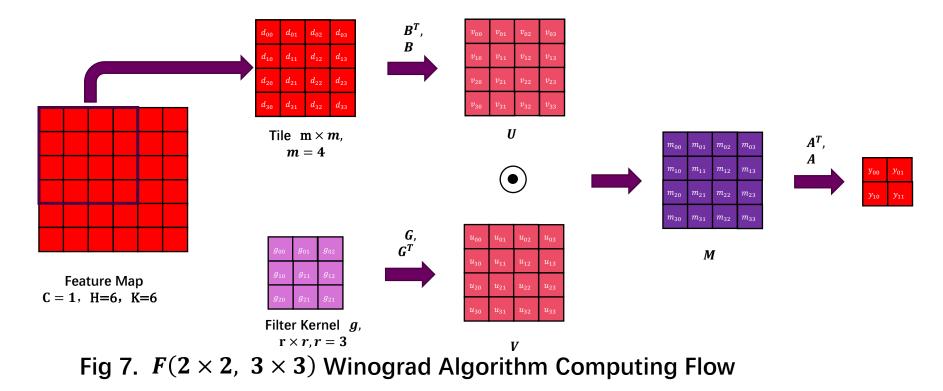
Winograd Accelerator Architecture

¹⁰2 Winograd Accelerator Architecture

Global Architecture of Winograd Algorithm

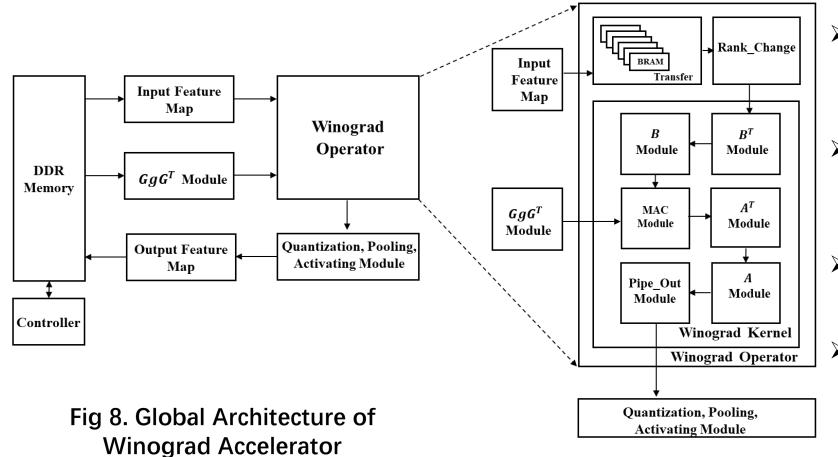
Winograd algorithm can represent traditional convolutional algorithm, which uses addition operation to replace multiplication, saving 56% multiplication resources in theoretical analysis.

$$\mathbf{Y} = \mathbf{A}^T \left[(\mathbf{G} \mathbf{g} \mathbf{G}^T) \odot (\mathbf{B}^T \mathbf{d} \mathbf{B}) \right] \mathbf{A}.$$



¹2 Winograd Accelerator Architecture

Global Architecture of Winograd Accelerator



- Design a full-system accelerator base on Winograd using Chisel for the first time
- Save on-chip memory, only 6
 BRAMs for rearrangement of data
- Change data type only by one line of code, highly parameterized
- Increase parallelism, resource utilization and throughout on 9-stage pipeline

Fig 9. Winograd Operator

¹²2 Winograd Accelerator Architecture

Agile Development Analysis

- An engineer of a commercial company uses System Verilog to realize the same Winograd convolution operator
- ➢ Our work decreases 64% code.

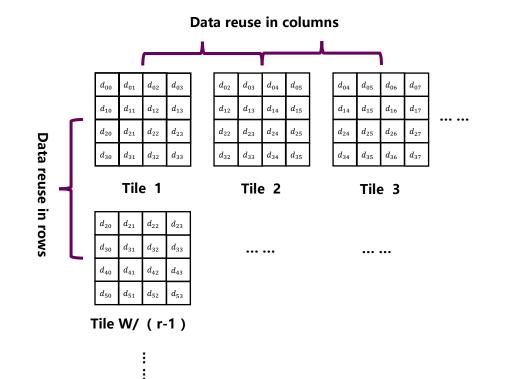
Conv Ways	#LUTs	#Registers	#CARRY8	#Boned IOB	#DSPs	#Lines of Code
Chisel	568	897	32	100	4	390
System Verilog	451	818	40	269	4	1067
Ratio	1.26 x	1.09x	0.8 x	0.37 x	1x	0.36x

Tab 1. Resources of Chisel and System Verilog on Single Winograd Channel

¹³2 Winograd Accelerator Architecture

Design of on-Chip memory Buffer

Our design uses 6 BRAM to rearrange data and achieve data reuse in rows, meeting Winograd computing flow requirements and saving on-chip memory.



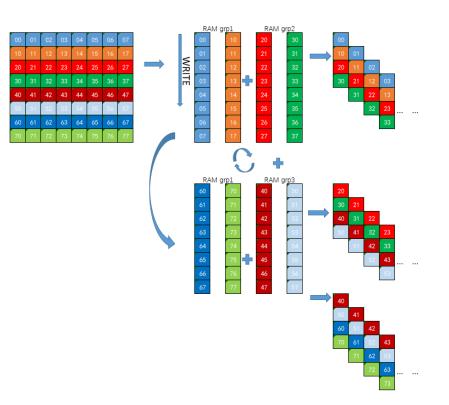
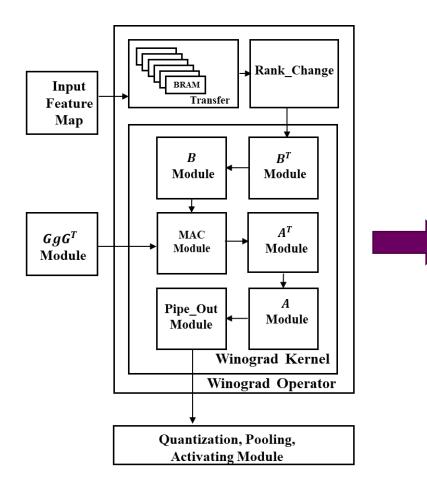


Fig 10. $F(2 \times 2, 3 \times 3)$ Data Tile Flow

Fig 11. Transfer Design (Data reuse in row)

¹⁴2 Winograd Accelerator Architecture

Pipeline Design of Architecture



➢ In the architecture, we design a 9-stage pipeline to continuously process the input data and improve throughput.

clk	0 1 2 3	4 5 6 7	8 9 10 11	12 13 14 15	16 17 18 19	20 21 22 23	24 25 26 27	28 29 30 31	32 33 34 35
	READ RAM	BT	В	MAC	AT0	AT1	A0	A1	OUT
	OUT	READ RAM	BT	В	MAC	AT0	AT1	A0	A1
	A1	OUT	READ RAM	BT	В	MAC	AT0	AT1	A0
	A0	A1	OUT	READ RAM	BT	В	MAC	AT0	AT1
	AT1	A0	A1	OUT	READ RAM	BT	В	MAC	AT0
	AT0	AT1	A0	A1	OUT	READ RAM	ВТ	В	MAC
	MAC	AT0	AT1	A0	A1	OUT	READ RAM	BT	В
	В	MAC	AT0	AT1	A0	A1	OUT	READ RAM	BT
	BT	В	MAC	AT0	AT1	A0	A1	OUT	READ RAM

Fig 12. C=1, $F(2 \times 2, 3 \times 3)$ Winograd 9-stage pipeline

Analysis of Performance

⁶3 Analysis of Performance

Deployment Platform and Resource

Tab 2. XILINX Alevo U200 on-Chip Resources

Hardware Resources	
Look-UP Tables (LUTs)	1,182K
Registers	2,364K
Digital Signal Processor (DSPs)	6,840
Double Data Rate (DDR)	64GB

- > Deployment Platform: XILINX Alevo U200 FPGA
- Instantiate 32 Winograd operator channel in our design
- DSPs are expensive and usually become the bottleneck of DNN deployment
- Therefore, decreasing the number of DSPs in single unit will promote DNNs to deploy on cheaper FPGAs

Hardware Resource Analysis

- **>** Baseline : MAC-Tree Acceleration with the same throughout
- > Baseline is used in commercial company, implemented by experienced FPGA engineer
- > Our design decreases **52%** DSPs and **61%** registers

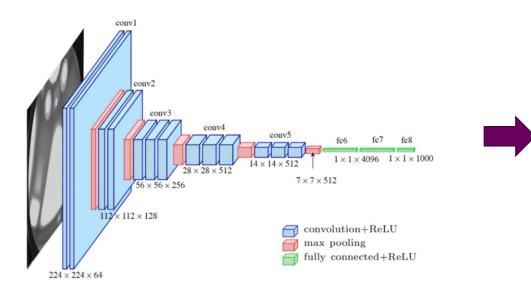
Tab 3. Resources of Winograd and MAC-Tree in Single Channel on FPGA

Convolution Ways	#LUTs	#Registers	#CLB	#CARRY8	#DSPs
Winograd	337172	456302	66597	18772	2382
MAC-Tree	316887	1173517	138527	7661	4942
Ratio	1.06 x	0.39x	0.48 x	2.45 x	0.48 x

¹⁸3 Analysis of Performance

Acceleration Analysis

- **Tasks :** Inference acceleration of VGG-E neural network for classifying flowers
- Neural Network Architecture: 16 Convolutional layers and 3 full-connected layers
- Convolutional Computation: 39 GFLOPs



Tab 4. VGG-E Parameter

Layers	Depth	$C \times H \times W$	K	GFLOPs
Conv1.1	1	$3 \times 224 \times 224$	64	0.17
Conv1.2	1	$64 \times 224 \times 224$	64	3.70
Conv2.1	1	$64 \times 112 \times 112$	128	1.85
Conv2.2	1	$128 \times 112 \times 112$	128	3.70
Conv3.1	1	$128 \times 56 \times 56$	256	1.85
Conv3.2	3	$256 \times 56 \times 56$	256	11.10
Conv4.1	1	$256 \times 28 \times 28$	512	1.85
Conv4.2	3	$512 \times 28 \times 28$	512	11.10
Conv5	4	$512 \times 14 \times 14$	512	3.70
FC1	1	$512 \times 7 \times 7$	4096	7.37
FC2	1	4096	4096	1.20
FC3	1	4096	5	0.001
Sum of Conv				39.02
Sum of FC				8.57

¹⁹3 Analysis of Performance

Acceleration Analysis

- Baseline : VGG-E inference on Intel CORE i5 CPU
- > Achieve about 3.6x inference speed

$$T_{adder_tree} = \log_2 C, \tag{3.1}$$

$$cycles = \frac{(T_{pipeline} + T_{adder_tree} + H \times W) \times K \times C}{K_{wino}},$$
(3.2)

t = cycles/F.

11

Tab 5. Inference time

Deployment Platforms	CPU	FPGA Winograd	Ratio
Infrence time	1398ms	385.42ms	3.6 x

$$VGG_conv_time = \frac{\sum_{l=1}^{16} ((T_{pipeline} + T_{adder_tree} + H_l \times W_l) \times K_l \times C_l / K_{wino}}{F}.$$
 (3.4)

$$VGG_time = VGG_conv_time + T_{pooling} + T_{fc} + T_{mem}.$$
(3.5)

(3.3)

Agile Development Analysis

- > The optimal quantization width is decided by our highly parameterized architecture
- ➤ The optimal config, with data error only 0.003%, decreases 30% utilization of LUTs compared with full-precision quantization
- > With rapid iterative development enabled by Chisel , we can balance the performance and resources

Tab 6. Resources of Winograd quantization width of Winograd Operator

Qua	antization Width	#LUTs	#Registers	#CARRY8	#Boned IOB	#DSPs	Average Error Rate
	Dec(8,7)	475	813	32	100	4	0.0158411%
	Dec(9,7)	539	863	32	100	4	0.0047639%
	Dec(10,8)	568	897	32	100	4	0.0030219%
-	Dec(10,7)	612	893	32	100	4	0.0038729%
	Dec(12,10)	787	1146	62	100	4	0.000206424%

Conclusion and Outlook

Conclusion and Outlook

MANJING UNIVERSITY

Conclusion

> Agile Development Perspective

- Design a parameterized DNN accelerator based on Winograd Algorithm using Chisel
- Choose the optimal data quantization to balance resource and performance

> Accelerator Design Perspective

- Optimize on-chip memory resource
- Decreasing 56% multiplication resources, 61% register compared with commercial implementation
- 3.6x speed compared with CPU

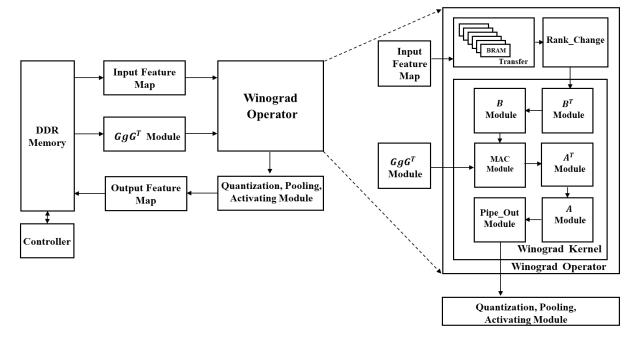


Fig 8. Global Architecture of Winograd Architecture

Agile Method

- Promote the development of AI accelerator with agile development methods
- > Build a more general DNN accelerator based on Chisel in future to make AI more accessible.
- Contribute to hardware and software co-design

Thank you!

Design of DNN Accelerator Based on Winograd Algorithm using Chisel

Respondent: Shixin Chen

Department: School of ECE, Nanjing University Email: shixinchen@smail.nju.edu.cn

Major: Microelectronic Science and Engineering (VLSI Deisgn and System Integration)

Reference

[1] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. Imagenet classification with deep convolutional neural networks[J]. Advances in neural information processing systems, 2012, 25.

[2] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for largescale image recognition[J]. arXiv preprint arXiv:1409.1556, 2014.

[3] SZEGEDY C, LIU W, JIA Y, et al. Going deeper with convolutions[C]// Proceedings of the IEEE conference on computer vision and pattern recognition. 2015: 1-9.

[4] HE K, ZHANG X, REN S, et al. Deep Residual Learning for Image Recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2016: 770-778. DOI: 10.1109/CVPR.2016.90.

[5] HOWARD A G, ZHU M, CHEN B, et al. Mobilenets: Efficient convolutional neural networks for mobile vision applications[J]. arXiv preprint arXiv:1704.04861, 2017.

[6] KRISHNAMOORTHI R. Quantizing deep convolutional networks for efficient inference: A whitepaper[J]. arXiv preprint arXiv:1806.08342, 2018.

[7] COURBARIAUX M, BENGIO Y, DAVID J P. Binaryconnect: Training deep neural networks with binary weights during propagations[J]. Advances in neural information processing systems, 2015, 28.

[8] BACHRACH J, VO H, RICHARDS B, et al. Chisel: constructing hardware in a scala embedded language[C]//DAC Design automation conference 2012. 2012: 1212-1221.

Reference

[9] IZRAELEVITZ A, KOENIG J, LI P, et al. Reusability is FIRRTL ground: Hardware construction languages, compiler frameworks, and transformations[C] //2017 IEEE/ACM International Conference on Computer-Aided Design (ICCAD). 2017: 209-216. DOI: 10.1109/ICCAD.2017.8203780.

[10] ASANOVIC K, AVIZIENIS R, BACHRACH J, et al. The rocket chip generator[J]. EECS Department, University of California, Berkeley, Tech. Rep. UCB/EECS-2016-17, 2016, 4.

[11] GENC H, HAJ-ALI A, IYER V, et al. Gemmini: An agile systolic array generator enabling systematic evaluations of deep-learning architectures[J]. arXiv preprint arXiv:1911.09925, 2019, 3: 25.

[12] WINOGRAD S. Arithmetic complexity of computations: vol. 33[M]. Siam, 1980.

[13] LAVIN A, GRAY S. Fast algorithms for convolutional neural networks[C]// Proceedings of the IEEE conference on computer vision and pattern recognition. 2016: 4013-4021.

[14] LAN Q, WANG Z, WEN M, et al. High performance implementation of 3D convolutional neural networks on a GPU[J]. Computational intelligence and neuroscience, 2017, 2017.

[15] AHMAD A, PASHA M A. Towards design space exploration and optimization of fast algorithms for convolutional neural networks (CNNs) on FPGAs[C]// 2019 Design, Automation & Test in Europe Conference & Exhibition (DATE). 2019: 1106-1111.

Reference

[16] WANG S, ZHU J, WANG Q, et al. Customized Instruction on RISC-V for Winograd-Based Convolution Acceleration[C]//2021 IEEE 32nd International Conference on Application-specific Systems, Architectures and Processors (ASAP). 2021: 65-68.

[17] KUNG H T. Why systolic architectures?[J]. Computer, 1982, 15(01): 37-46.

[18] JOUPPI N P, YOUNG C, PATIL N, et al. In-datacenter performance analysis of a tensor processing unit[C]//Proceedings of the 44th annual international 35 symposium on computer architecture. 2017: 1-12.

[19] CHEN Y H, KRISHNA T, EMER J S, et al. Eyeriss: An energy-efficient reconfigurable accelerator for deep convolutional neural networks[J]. IEEE journal of solid-state circuits, 2016, 52(1): 127-138.

[20] CHEN Y H, YANG T J, EMER J, et al. Eyeriss v2: A flexible accelerator for emerging deep neural networks on mobile devices[J]. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2019, 9(2): 292-308.

[21] ASANOVIC K, PATTERSON D A, CELIO C. The berkeley out-of-order machine (boom): An industry-competitive, synthesizable, parameterized risc-v processor[R]. University of California at Berkeley Berkeley United States, 2015.

[22] MATHIEU M, HENAFF M, LECUN Y. Fast training of convolutional networks through FFTS: International Conference on Learning Representations (ICLR2014), CBLS, April 2014[C]//. 2014.