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The Development of Artificial Intelligence

➢ Artificial intelligence (AI) Applications are

in popularity

• Object Detection

• Face Recognition

• Autonomous Vehicles

• Super-resolution Videos

• ……

➢ Deep Convolutional Neural Networks 

(CNNs)  stimulated AI research 

• Mimicking the mechanisms of neurons

• Extracting features effectively 

• Outperforming many traditional methods

Fig 1. Wide usage of AI Fig 2.  Deep Convolutional Neural Network
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The Development of Deep CNNs

Fig 3. The Development of Deep CNNs

(c) GoogLeNet (Szegedy et al., 2015)(a) AlexNet (Krizhevsky et al., 2012 )

(b) VGGNet (Simonyan et al., 2014 ) (d) ResNet (He et al., 2016)

➢ Deep CNNs developed rapidly

• Deeper and deeper layers 

• Huge parameters

• Convolution consists of 90+% 

computation

• DNN Accelerator  is necessary

Fig 4.  Convolutional Computation 
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Deployment Platforms of Deep CNNs 

Fig 5. The Deployment platforms of Deep CNNs

➢ Deep CNNs deployment platforms

• Improving parallelism     → GPU

• Improving specialization → ASIC

• Improving flexibility, parallelism and 

specialization                   → FPGA 

➢ Convolutional computation acceleration

• Accelerating multiplication-accumulation    

→ Digital Signal Processor on FPGA

• Fast convolution algorithm  

→ FFT, Winograd

➢ There are still many challenges

• Long development period of accelerator

• Limited hardware resources on platforms

• Balance between performance and resources

(b) FPGA (Xilinx)

(c) GPU (NVIDIA)

(a) CPU (Intel)



7

Deployment Platformes of Deep CNNs 

Fig 6. Chisel Code Samples: 
Parameterized NoC Routers

➢ Drawbacks of  Verilog

• Low level abstraction, consuming lots of time

• Low efficiency in iterative development  

• Error-prone element types and data width

➢ Characteristics of Chisel

• Object-oriented programming 

• Functional programming

• High-level parameterized philosophy  

→ Iteratively develop to the optimal design

→ Agile IC design

➢ Chisel → FIRRTL → Verilog →Synthesis Tool
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Bottlenecks

➢

• Design a parameterized DNN accelerator 

based on Winograd Algorithm using Chisel

• Choose the optimal data quantization to 

balance resource and performance

➢

• Optimize on-chip memory resource 

• Decrease 56% multiplication resources, 

61% registers  compared with commercial 

implementation

• Achieve 3.6x speed compared with CPU

➢ Designing accelerator is a long period  

using Verilog, consuming lots of 

manpower

➢ Accelerator consumes lots of on-chip 

resources, limiting implementation of big 

DNN model

Innovative Points
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Winograd Accelerator Architecture
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Global Architecture of Winograd Algorithm
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Fig 7.  𝑭 𝟐 × 𝟐, 𝟑 × 𝟑 Winograd Algorithm Computing Flow 

➢ Winograd algorithm can represent traditional convolutional algorithm, which uses addition 

operation to replace multiplication, saving 56% multiplication resources in theoretical analysis.
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Global Architecture of Winograd Accelerator

Fig 8. Global Architecture of 
Winograd Accelerator

Fig 9.  Winograd Operator

➢ Design a full-system accelerator  

base on Winograd using Chisel for 

the first time

➢ Save on-chip memory, only 6 

BRAMs for rearrangement of 

data

➢ Change data type only by one line 

of code, highly parameterized 

➢ Increase parallelism, resource 

utilization and throughout on 

9-stage pipeline 
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Agile Development Analysis

➢ An engineer of a commercial company uses System Verilog to realize the same Winograd 

convolution operator

➢ Our work decreases 64% code.

Tab 1. Resources of Chisel and System Verilog on Single Winograd Channel
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Design of on-Chip memory Buffer

➢ Our design uses 6 BRAM to rearrange data and achieve data reuse in rows meeting 

Winograd computing flow requirements and saving on-chip memory.

Fig 11.  Transfer Design (Data reuse in row)
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Pipeline Design of Architecture 

➢ In the architecture, we design a 9-stage pipeline to continuously 

process the input data and improve throughput.

Fig 12. C=1, 𝑭 𝟐 × 𝟐, 𝟑 × 𝟑 Winograd 9-stage pipeline 
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Analysis of Performance 



16

Deployment Platform and Resource 

➢ Deployment Platform: XILINX Alevo U200 FPGA 

➢ Instantiate 32 Winograd operator channel  in our 

design

➢ DSPs are expensive and usually become the bottleneck 

of DNN deployment 

➢ Therefore, decreasing the number of DSPs in single 

unit will promote DNNs to deploy on cheaper FPGAs

Tab 2. XILINX Alevo U200 on-Chip Resources
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Hardware Resource Analysis 

➢ Baseline : MAC-Tree Acceleration with the same throughout 

➢ Baseline is used in commercial company, implemented by experienced FPGA engineer

➢ Our design decreases 52% DSPs and 61% registers

Tab 3. Resources of Winograd and MAC-Tree in Single Channel on FPGA
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Acceleration Analysis 

➢ Tasks : Inference acceleration of VGG-E neural network for classifying flowers 

➢ Neural Network Architecture: 16 Convolutional layers and 3 full-connected layers

➢ Convolutional Computation: 39 GFLOPs 
Tab 4. VGG-E Parameter
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Acceleration Analysis 

➢ Baseline : VGG-E inference on Intel CORE i5 

CPU 

➢ Achieve about 3.6x inference speed 

➢ Setting:  FPGA@200M Hz

Tab 5. Inference time
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Agile Development Analysis 

➢ The optimal quantization width is decided by our highly parameterized architecture

➢ The optimal config,  with data error only 0.003%,  decreases 30% utilization of LUTs compared with 

full-precision quantization

➢ With rapid iterative development enabled by Chisel , we can balance the performance and resources

Tab 6. Resources of Winograd quantization width of Winograd Operator
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Conclusion and Outlook
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Conclusion 

➢

• Design a parameterized DNN accelerator 

based on Winograd Algorithm using Chisel

• Choose the optimal data quantization to 

balance resource and performance

➢

• Optimize on-chip memory resource 

• Decreasing 56% multiplication resources, 

61% register  compared with commercial 

implementation

• 3.6x speed compared with CPU Fig 8. Global Architecture of 
Winograd Architecture
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Agile Method 

➢

➢

➢
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