
Respondent Shixin Chen

Department School of ESE,
Nanjing University

Email shixinchen@smail.nju.edu.cn

Major：Microelectronic Science and Engineering

(VLSI Design and System Integration)

P r e l i m i n a r y

W i n o g r a d A c c e l e r a t o r A r c h i t e c t u r e

A n a l y s i s o f P e r f o r m a n c e

C o n c l u s i o n a n d O u t l o o k

1
Preliminary

4

The Development of Artificial Intelligence

➢ Artificial intelligence (AI) Applications are

in popularity

• Object Detection

• Face Recognition

• Autonomous Vehicles

• Super-resolution Videos

• ……

➢ Deep Convolutional Neural Networks

(CNNs) stimulated AI research

• Mimicking the mechanisms of neurons

• Extracting features effectively

• Outperforming many traditional methods

Fig 1. Wide usage of AI Fig 2. Deep Convolutional Neural Network

5

The Development of Deep CNNs

Fig 3. The Development of Deep CNNs

(c) GoogLeNet (Szegedy et al., 2015)(a) AlexNet (Krizhevsky et al., 2012)

(b) VGGNet (Simonyan et al., 2014) (d) ResNet (He et al., 2016)

➢ Deep CNNs developed rapidly

• Deeper and deeper layers

• Huge parameters

• Convolution consists of 90+%

computation

• DNN Accelerator is necessary

Fig 4. Convolutional Computation

6

Deployment Platforms of Deep CNNs

Fig 5. The Deployment platforms of Deep CNNs

➢ Deep CNNs deployment platforms

• Improving parallelism → GPU

• Improving specialization → ASIC

• Improving flexibility, parallelism and

specialization → FPGA

➢ Convolutional computation acceleration

• Accelerating multiplication-accumulation

→ Digital Signal Processor on FPGA

• Fast convolution algorithm

→ FFT, Winograd

➢ There are still many challenges

• Long development period of accelerator

• Limited hardware resources on platforms

• Balance between performance and resources

(b) FPGA (Xilinx)

(c) GPU (NVIDIA)

(a) CPU (Intel)

7

Deployment Platformes of Deep CNNs

Fig 6. Chisel Code Samples:
Parameterized NoC Routers

➢ Drawbacks of Verilog

• Low level abstraction, consuming lots of time

• Low efficiency in iterative development

• Error-prone element types and data width

➢ Characteristics of Chisel

• Object-oriented programming

• Functional programming

• High-level parameterized philosophy

→ Iteratively develop to the optimal design

→ Agile IC design

➢ Chisel → FIRRTL → Verilog →Synthesis Tool

8

Bottlenecks

➢

• Design a parameterized DNN accelerator

based on Winograd Algorithm using Chisel

• Choose the optimal data quantization to

balance resource and performance

➢

• Optimize on-chip memory resource

• Decrease 56% multiplication resources,

61% registers compared with commercial

implementation

• Achieve 3.6x speed compared with CPU

➢ Designing accelerator is a long period

using Verilog, consuming lots of

manpower

➢ Accelerator consumes lots of on-chip

resources, limiting implementation of big

DNN model

Innovative Points

2
Winograd Accelerator Architecture

10

Global Architecture of Winograd Algorithm

𝑑32 𝑑33

𝑑12 𝑑13

𝑑20 𝑑21 𝑑22 𝑑23

𝑑30 𝑑31

𝑑00 𝑑01 𝑑02 𝑑03

𝑑10 𝑑11

𝑩𝑻,
𝑩

𝑣32 𝑣33

𝑣12 𝑣13

𝑣20 𝑣21 𝑣22 𝑣23

𝑣30 𝑣31

𝑣00 𝑣01 𝑣02 𝑣03

𝑣10 𝑣11

𝑔00 𝑔01 𝑔02

𝑔10 𝑔11 𝑔12

𝑔20 𝑔21 𝑔21

Feature Map
𝐂 = 𝟏，H=6，K=6

Filter Kernel 𝒈,
𝐫 × 𝒓, 𝒓 = 𝟑

Tile m×𝒎,
𝒎 = 𝟒

𝑮,
𝑮𝑻

𝑢32 𝑢33

𝑢12 𝑢13

𝑢20 𝑢21 𝑢22 𝑢23

𝑢30 𝑢31

𝑢00 𝑢01 𝑢02 𝑢03

𝑢10 𝑢11

𝑚32 𝑚33

𝑚12 𝑚13

𝑚20 𝑚21 𝑚22 𝑚23

𝑚30 𝑚31

𝑚00 𝑚01 𝑚02 𝑚03

𝑚10 𝑚11

𝑨𝑻,
𝑨

y00 𝑦01

𝑦10 𝑦11

𝑽

𝑼

𝑴

Fig 7. 𝑭 𝟐 × 𝟐, 𝟑 × 𝟑 Winograd Algorithm Computing Flow

➢ Winograd algorithm can represent traditional convolutional algorithm, which uses addition

operation to replace multiplication, saving 56% multiplication resources in theoretical analysis.

11

Global Architecture of Winograd Accelerator

Fig 8. Global Architecture of
Winograd Accelerator

Fig 9. Winograd Operator

➢ Design a full-system accelerator

base on Winograd using Chisel for

the first time

➢ Save on-chip memory, only 6

BRAMs for rearrangement of

data

➢ Change data type only by one line

of code, highly parameterized

➢ Increase parallelism, resource

utilization and throughout on

9-stage pipeline

12

Agile Development Analysis

➢ An engineer of a commercial company uses System Verilog to realize the same Winograd

convolution operator

➢ Our work decreases 64% code.

Tab 1. Resources of Chisel and System Verilog on Single Winograd Channel

13

Design of on-Chip memory Buffer

➢ Our design uses 6 BRAM to rearrange data and achieve data reuse in rows meeting

Winograd computing flow requirements and saving on-chip memory.

Fig 11. Transfer Design (Data reuse in row)

𝑑12 𝑑13

𝑑32 𝑑33

𝑑20 𝑑21 𝑑22 𝑑23

𝑑30 𝑑31

𝑑00 𝑑01 𝑑02 𝑑03

𝑑10 𝑑11

Tile 1

𝑑32 𝑑33

𝑑12 𝑑13

𝑑22 𝑑23

𝑑02 𝑑03

𝑑24 𝑑25

𝑑34 𝑑35

𝑑04 𝑑05

𝑑14 𝑑15

Tile 2

𝑑32 𝑑33

𝑑20 𝑑21 𝑑22 𝑑23

𝑑30 𝑑31

𝑑52 𝑑53

𝑑40 𝑑41 𝑑42 𝑑43

𝑑50 𝑑51

𝑑36 𝑑37

𝑑16 𝑑17

𝑑26 𝑑27

𝑑06 𝑑07

𝑑24 𝑑25

𝑑34 𝑑35

𝑑04 𝑑05

𝑑14 𝑑15

Tile 3

… …

Tile W/（ r-1 ）

…
 …

Data reuse in columns

D
a
ta

 re
u

se
 in

 ro
w

s … … … …

Fig 10. 𝑭 𝟐 × 𝟐, 𝟑 × 𝟑 Data Tile Flow

14

Pipeline Design of Architecture

➢ In the architecture, we design a 9-stage pipeline to continuously

process the input data and improve throughput.

Fig 12. C=1, 𝑭 𝟐 × 𝟐, 𝟑 × 𝟑 Winograd 9-stage pipeline

3
Analysis of Performance

16

Deployment Platform and Resource

➢ Deployment Platform: XILINX Alevo U200 FPGA

➢ Instantiate 32 Winograd operator channel in our

design

➢ DSPs are expensive and usually become the bottleneck

of DNN deployment

➢ Therefore, decreasing the number of DSPs in single

unit will promote DNNs to deploy on cheaper FPGAs

Tab 2. XILINX Alevo U200 on-Chip Resources

17

Hardware Resource Analysis

➢ Baseline : MAC-Tree Acceleration with the same throughout

➢ Baseline is used in commercial company, implemented by experienced FPGA engineer

➢ Our design decreases 52% DSPs and 61% registers

Tab 3. Resources of Winograd and MAC-Tree in Single Channel on FPGA

18

Acceleration Analysis

➢ Tasks : Inference acceleration of VGG-E neural network for classifying flowers

➢ Neural Network Architecture: 16 Convolutional layers and 3 full-connected layers

➢ Convolutional Computation: 39 GFLOPs
Tab 4. VGG-E Parameter

19

Acceleration Analysis

➢ Baseline : VGG-E inference on Intel CORE i5

CPU

➢ Achieve about 3.6x inference speed

➢ Setting: FPGA@200M Hz

Tab 5. Inference time

20

Agile Development Analysis

➢ The optimal quantization width is decided by our highly parameterized architecture

➢ The optimal config, with data error only 0.003%, decreases 30% utilization of LUTs compared with

full-precision quantization

➢ With rapid iterative development enabled by Chisel , we can balance the performance and resources

Tab 6. Resources of Winograd quantization width of Winograd Operator

4
Conclusion and Outlook

22

Conclusion

➢

• Design a parameterized DNN accelerator

based on Winograd Algorithm using Chisel

• Choose the optimal data quantization to

balance resource and performance

➢

• Optimize on-chip memory resource

• Decreasing 56% multiplication resources,

61% register compared with commercial

implementation

• 3.6x speed compared with CPU Fig 8. Global Architecture of
Winograd Architecture

23

Agile Method

➢

➢

➢

Thank you

Design of DNN Accelerator Based on

Winograd Algorithm using Chisel

Respondent Shixin Chen

Department School of ECE,
Nanjing University

Email shixinchen@smail.nju.edu.cn

Major：Microelectronic Science and Engineering

(VLSI Deisgn and System Integration)

